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high-precision An
1 data of the Jefferson Lab E99-117 ex-

periment [19] at large x. Since the elastic contribution is
included separately, the maximum value of x is defined
for each experiment by the pion electroproduction thresh-
old. The resulting total moments Γn

1 from the world data
are plotted in Fig. 1 for 0.5 < Q2 ≤ 10 GeV2, where the
total uncertainty in each data set is the quadratic sum of
the statistical and systematic uncertainties. The Jeffer-
son Lab experiment E94-010 (filled circles) extends the
range of Q2 with precision data below Q2 = 1 GeV2.
In all cases the data include both the inelastic and elas-
tic contributions, with the latter taken from the fit in
Ref. [20].
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FIG. 1: Q2 dependence of Γn

1 from various experiments. The
error bars are a quadratic sum of statistical and systematic
uncertainties. The twist-2 contribution from Eq. (2) is given
by the band with ∆Σ = 0.35, and its width represents the
uncertainty in αs. The elastic contribution is indicated by
the long-dashed curve.

The twist-2 contribution µn
2 is determined by fitting

the neutron data in Fig. 1 assuming there are no higher
twists in the data beyond Q2 = 5 GeV2, from which we
obtain ∆Σ = 0.35±0.08, where the uncertainty is statis-
tical. Using this central value, the twist-2 contribution is
illustrated in Fig. 1 by the shaded band, with the extrema
representing the range of uncertainty associated with the
value of αs in the Wilson coefficients. The exact value of
∆Σ depends somewhat on the x → 0 behavior assumed
in the extrapolation beyond the measured region. How-
ever, since the higher-twist contributions are determined
from the relative variation in Γn

1 from high to low Q2, the
absolute normalization of the leading-twist contribution
does not play a major role in determining fn

2 .
The higher-twist contribution ∆Γn

1 , obtained by sub-
tracting the leading-twist curves in Fig. 1 from data on
the total moment Γn

1 , is shown in Fig. 2 as a function
of 1/Q2 for ∆Σ = 0.35. Here we have used an

2 =
−0.0031(20) for the target mass corrections, obtained
from a fit to the world neutron data [19] at Q2 = 5 GeV2,
and the value dn

2 = 0.0079(48) for the twist-3 matrix el-

ement obtained from SLAC experiment E155X [21]. At
this Q2 value an

2 and dn
2 are dominated by their leading-

twist contributions.
While the Q2 evolution of the (twist-2) an

2 is straight-
forward, the evolution of higher-twist structure func-
tions is in general rather more involved. For the twist-4
fn
2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
6 as free pa-

rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be

fn
2 = 0.033± 0.005 , µn

6 = (−0.019± 0.002)M4 , (9)

normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find

fn
2 = 0.034± 0.043 , µn

6 = (−0.019± 0.017)M4 . (10)
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FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.
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FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.
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FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.

 Moment of neutron g  structure function1
Meziani, WM, et al., Phys. Lett. B613, 148 (2005) 

3

high-precision An
1 data of the Jefferson Lab E99-117 ex-

periment [19] at large x. Since the elastic contribution is
included separately, the maximum value of x is defined
for each experiment by the pion electroproduction thresh-
old. The resulting total moments Γn

1 from the world data
are plotted in Fig. 1 for 0.5 < Q2 ≤ 10 GeV2, where the
total uncertainty in each data set is the quadratic sum of
the statistical and systematic uncertainties. The Jeffer-
son Lab experiment E94-010 (filled circles) extends the
range of Q2 with precision data below Q2 = 1 GeV2.
In all cases the data include both the inelastic and elas-
tic contributions, with the latter taken from the fit in
Ref. [20].

1 10
-0.10

-0.05

0

0.05

2
(GeV  )2Q

n
Γ

  
 (

  
  
 )

1
Q

2

SLAC E154SMC

HERMES

SLAC E142

SLAC E143

JLab E94010

FIG. 1: Q2 dependence of Γn

1 from various experiments. The
error bars are a quadratic sum of statistical and systematic
uncertainties. The twist-2 contribution from Eq. (2) is given
by the band with ∆Σ = 0.35, and its width represents the
uncertainty in αs. The elastic contribution is indicated by
the long-dashed curve.

The twist-2 contribution µn
2 is determined by fitting

the neutron data in Fig. 1 assuming there are no higher
twists in the data beyond Q2 = 5 GeV2, from which we
obtain ∆Σ = 0.35±0.08, where the uncertainty is statis-
tical. Using this central value, the twist-2 contribution is
illustrated in Fig. 1 by the shaded band, with the extrema
representing the range of uncertainty associated with the
value of αs in the Wilson coefficients. The exact value of
∆Σ depends somewhat on the x → 0 behavior assumed
in the extrapolation beyond the measured region. How-
ever, since the higher-twist contributions are determined
from the relative variation in Γn

1 from high to low Q2, the
absolute normalization of the leading-twist contribution
does not play a major role in determining fn

2 .
The higher-twist contribution ∆Γn

1 , obtained by sub-
tracting the leading-twist curves in Fig. 1 from data on
the total moment Γn

1 , is shown in Fig. 2 as a function
of 1/Q2 for ∆Σ = 0.35. Here we have used an

2 =
−0.0031(20) for the target mass corrections, obtained
from a fit to the world neutron data [19] at Q2 = 5 GeV2,
and the value dn

2 = 0.0079(48) for the twist-3 matrix el-

ement obtained from SLAC experiment E155X [21]. At
this Q2 value an

2 and dn
2 are dominated by their leading-

twist contributions.
While the Q2 evolution of the (twist-2) an

2 is straight-
forward, the evolution of higher-twist structure func-
tions is in general rather more involved. For the twist-4
fn
2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
6 as free pa-

rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be

fn
2 = 0.033± 0.005 , µn

6 = (−0.019± 0.002)M4 , (9)

normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find

fn
2 = 0.034± 0.043 , µn

6 = (−0.019± 0.017)M4 . (10)

0 0.5 1 1.5 2

1/Q
2
 (GeV

−2
)

−0.08

−0.04

0

0.04

0.08

∆
Γ

1

n

SLAC E154SMC

HERMES

SLAC E142

SLAC E143

JLab E94010

FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.

higher twist small
down to Q  ~ 1 GeV2 2

Γ1(Q
2) =

∫ 1

0

dx g1(x, Q2)

= Γ(τ=2)
1 (Q2) + ∆Γ1(Q

2)



262 M. Osipenko et al. / Physics Letters B 609 (2005) 259–264

Fig. 2. Q2 dependence of the Nachtmann moment M1(Q
2). The

error bars are statistical, with the systematic errors indicated by

the hashed areas (see text). The leading twist (dashed), 1/Q2

(dot-dashed), 1/Q4 (dot-dot-dashed) and elastic (dotted) contribu-

tions are shown separately. The solid curve is the sum of leading and

higher twist terms.

dependence of the structure function when interpolat-

ing between data points, and is therefore well-suited

for a study of Q2 evolution of the moments. For the

low-x extrapolation, beyond the region where data ex-

ist, we use the Regge model-inspired parametrization

from Ref. [26]. To estimate the uncertainty associated

with the low-x extrapolation, we also consider other

parameterizations [27], and take the maximum differ-

ence between the respective low-x contributions as the

error.

The resulting Nachtmann moment M1(Q
2) is

shown in Fig. 2, where the error bars on the data

points are statistical only. The systematic errors, some

of which are correlated, are shown separately in the

hashed areas above the data, and represent uncertain-

ties from the low-x extrapolation (lower hashed area),

and the experimental systematic errors together with

those from A2, R and an estimated 5% uncertainty on

the elastic contribution (upper hashed area). The g2
contribution to M1 is obtained from A‖, A⊥, and F1,

as determined from the present analysis (see Ref. [21]

for details).

The fit to the total momentM1(Q
2) uses three para-

meters, ainv0 , f2 (or µ4) and µ6, with the nonsinglet ax-

ial charges (gA and a8) as inputs. For the leading twist

contribution we use a next-to-leading order approxi-

mation for the Wilson coefficients and the two-loop

expression for αs , which atQ
2 = 1 GeV2 corresponds

to αNLOs = 0.45± 0.05 in the MS scheme.

In fitting the parameters, we have considered both

multiparameter (simultaneous) fits and sequential fits,

in which the leading twist term ainv0 is first fitted to

the high-Q2 data, and then the higher twist terms

are extracted. While both methods should in princi-

ple yield the same results when the experimental errors

are small, in practice the multiparameter fit may not be

the most suitable choice when emphasizing the high-

precision low-Q2 data. The multiparameter fit is most

effective when the errors on the data are similar across

the entire Q2 range, and the number of points in the

region which determines the leading twist contribution

(Q2 ! 5 GeV2) is similar to that which constrains the

higher twists (Q2 " 5 GeV2).

Assuming the data at high Q2 are saturated by the

twist-2 term alone, the fit to the Q2 > 5 GeV2 data

determines the singlet axial charge to be

ainv0 = 0.145± 0.018(stat) ± 0.103(sys)

(6)± 0.041(low x) ± 0.006
0.010(αs),

where the first and second errors are statistical and

systematic, the third comes from the x → 0 extrap-

olation, and the last is due to the uncertainty in αs .

We have considered the sensitivity of the results to

the value of Q2 used to constrain the leading twist

term. We find that ainv0 converges to the above value

for Q2 ! 3–4 GeV2. Fitting the Q2 > 10 GeV2 data

would lead to practically the same values of ainv0 , but

with a slightly larger error bar.

Having determined the twist-2 term from the high-

Q2 data, we now extract the 1/Q2 and 1/Q4 coeffi-

cients from the 1 # Q2 # 5 GeV2 data, fixing ainv0 to

the above value, but allowing it to vary within its sta-

tistical errors. For the twist-4 coefficient we find

f2 = 0.039± 0.022(stat) ± 0.000
0.018(sys)

(7)± 0.030(low x) ± 0.007
0.011(αs),

normalized at a scale Q2 = 1 GeV2 (the Q2 evolution

of f2 is implemented using the one-loop anomalous

dimensions calculated in Ref. [28]). The systematic

uncertainty on f2 is determined by refitting the M1

data shifted up or down by the M1 systematic uncer-

tainty shown in Fig. 2 (upper hashed area). The low-x

extrapolation uncertainty is determined by fitting the

M1 values shifted by the maximum difference between

the x → 0 contributions calculated with the parame-

terizations from Refs. [26,27] (lower hashed area in

Osipenko, WM et al., Phys. Lett. B609, 259 (2005) 

 Moment of proton g  structure function1

higher twist small down to Q  ~ 2 GeV2 2



nonperturbative interactions between
quarks and gluons not dominant
at these scales 

suggests strong cancellations between 
resonances, resulting in dominance 
of leading twist

Total higher twist     zero at Q2
∼ 1 − 2 GeV

2
∼

OPE does not tell us why higher twists 
are small !



Can we understand this
behavior dynamically?

How do cancellations between 
coherent resonances produce
incoherent scaling function?



Dynamical quark models



Coherence vs. incoherence

Exclusive form factors
coherent scattering from quarks

dσ ∼

(∑
i

ei

)2

dσ ∼

∑

i

e
2

i

Inclusive structure functions

incoherent scattering from quarks

How can the square of a sum
become the sum of squares?



Pedagogical model

Two quarks bound in a harmonic oscillator potential
exactly solvable spectrum

Structure function given by sum of squares of 
transition form factors

F (ν,q2) ∼

∑

n

∣∣G0,n(q2)
∣∣2 δ(En − E0 − ν)

Charge operator                          excites
∝ (e1 + e2)

2

∝ (e1 − e2)
2

Σi ei exp(iq · ri)

odd  partial waves with strength 
even partial waves with strength



Pedagogical model

Resulting structure function

F (ν,q2) ∼

∑

n

{
(e1 + e2)

2 G2
0,2n

+ (e1 − e2)
2 G2

0,2n+1

}

If states degenerate, cross terms
cancel when averaged over nearby even and odd 
parity states 

(∼ e1e2)

Minimum condition for duality:

at least one complete set of even and odd 
parity resonances must be summed over

Close, Isgur,  Phys. Lett. B509 (2001) 81



Quark model

Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

Simplified case:  magnetic coupling of      to quarkγ
∗

expect dominance over electric at large Q2



Quark model

Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
"n
, !4#

and polarization asymmetries,

A1
N#

g1
N

F1
N , !5#

A1
"N#

g1
"N

F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2

SYMMETRY BREAKING AND QUARK-HADRON DUALITY . . . PHYSICAL REVIEW C 68, 035210 !2003#
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λ (ρ) = (anti) symmetric component of ground state wfn.

|N〉 = λ |ϕ ⊗ χ〉sym + ρ |ϕ ⊗ χ〉antisym



Quark model

Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

Similarly for neutrinos ...
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Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
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have equal overall strengths

+ -
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λ (ρ) = (anti) symmetric component of ground state wfn.
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where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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and polarization asymmetries,
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for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):
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TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2
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p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
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TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
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"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2
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Quark model

as in quark-parton model !

SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence

7

Summing over all resonances in 56   and 70   multiplets+ -
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Quark model
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the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:
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However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
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Quark model

Similarly for neutrinos ...

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .
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TABLE II. As in Table I, but for neutrino-induced N→N* transitions.
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Quark model

as in quark-parton model !

SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence
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the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
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sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
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predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
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Quark model

as in parton model !

Similarly for neutrinos ...

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
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ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-
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SU!6# quark-parton model results (19):

Rnp#
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p#
5

9
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n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2
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Quark model

as in quark-parton model !

SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence

7
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Quark model

SU(6) may be      valid at x ~ 1/3 ≈

which combinations of resonances reproduce
behavior of structure functions at large x?

R!!
1

2
, A1

!p!"
1

3
, A1

!n!
2

3
"SU#6 $% , #8$

for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
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tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.
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While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-
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quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1

F. E. CLOSE AND W. MELNITCHOUK PHYSICAL REVIEW C 68, 035210 #2003$

035210-4

significant deviations at large xBut

inconsistent
with duality

gives ∆u/u > 1



Quark model

SU(6) may be      valid at x ~ 1/3 ≈

which combinations of resonances reproduce
behavior of structure functions at large x?
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for neutrino scattering, which correspond to u!2d and &u
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1

F. E. CLOSE AND W. MELNITCHOUK PHYSICAL REVIEW C 68, 035210 #2003$

035210-4

R!!
1

2
, A1

!p!"
1

3
, A1

!n!
2

3
"SU#6 $% , #8$

for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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Quark model

SU(6) may be      valid at x ~ 1/3 ≈

which combinations of resonances reproduce
behavior of structure functions at large x?
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3
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!n!
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3
"SU#6 $% , #8$

for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"
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3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"
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3
!u↓#ud $1'

"
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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hence one may expect that at large enough Q2 these would

be constrained by perturbative QCD. In particular, at high Q2

perturbative arguments suggest that the interaction of the

photon !or W boson" should be predominantly with quarks
with the same helicity as the nucleon #23,24$. Since the pho-
ton (W boson" scattering from a massless quark conserves

helicity, the %3/2 cross section would be expected to be sup-
pressed relative to the %1/2 #19$. The question then arises
whether duality can exist between parton distributions at

large x and resonance transitions classified according to

quark helicity rather than spin.

In general, if the relative strengths of the %1/2 and %3/2
contributions to the cross section are weighted by cos2&h and
sin2&h , respectively, then from Table I the ratio of the neu-

tron to proton F1 structure functions can be written as

Rnp!
3

7"5sin2&h
, !18"

while the proton and neutron polarization asymmetries be-

come

A1
p!
7"9 sin2&h
7"5sin2&h

, !19"

A1
n!1"2 sin2&h . !20"

Similarly for neutrino scattering, one has

R'!
1#sin2&h
5"4 sin2&h

!21"

for the unpolarized structure functions, and

A1
'p!

1"3 sin2&h
1#sin2&h

, !22"

A1
'n!

5"6 sin2&h
5"4 sin2&h

!23"

for neutrino-induced polarization asymmetries. The depen-

dence of these ratios on the mixing angle &h is illustrated in
Figs. 2 and 3 !solid curves". For &h!(/4 the SU!6" results in

Eqs. !7" and !8" are once again recovered. In the phenom-
enologically favored region of 0)&h)(/4 the predictions
for A1

p and for A1
'n are very similar to those derived on the

basis of quark spin, which reflects the fact that the ratios

*u/u are predicted to be similar in both cases. Both the %3/2
and S3/2 suppression scenarios give rise to the same predic-

tions for A1
n in the &→0 limit, although the approach to the

maximum values is faster in the case of %3/2 suppression. For
the unpolarized ratios, %3/2 suppression gives rise to larger
values of Rnp and R' than for S3/2 suppression. This is also

evident from the modified transition strengths for F1 and g1
displayed in Tables IV and V for the case of %1/2 dominance
at large x. Summing up the coefficients for the neutron and

proton, one has in the limit x→1:

Rnp!
3

7
, A1

p!1, A1
n!1 #&h!0$ , !24"

for the electromagnetic ratios, and

R'!
1

5
, A1

'p!1, A1
'n!1 #&h!0$ , !25"

for neutrino scattering.

Fitting the x dependence of the mixing angle &h(x) to the
Rnp data with the above x→1 constraint !Fig. 4", the result-
ing predictions for A1

p ,n are shown in Figs. 5 and 6, respec-

tively. Compared with the S1/2 dominance scenario, the %1/2
dominance model predicts a faster approach to the

asymptotic limits. The values for the ratios in Eqs. !24" and
!25" correspond exactly to those calculated at the quark level
on the basis of perturbative QCD counting rules #23,24$.
There, the deep inelastic scattering at x+1 requires the ex-
change in the initial state of two hard gluons, which prefer-

entially enhances those configurations in the nucleon wave

function in which the spectator quarks have zero helicity.

The structure function at large x is then determined by com-

ponents of the nucleon wave function in which the helicity of

the interacting quark matches that of the nucleon. For an

initial state SU!6" wave function, Eq. !9", suppression of the
helicity antialigned configurations leads to the unpolarized

ratio d/u!1/5, and the polarization ratio *q/q!1 for all

TABLE IV. Relative strengths of electromagnetic N→N* transitions corresponding to %1/2 dominance.
These values can be obtained from Table I by adding the F1 and g1 contributions.

SU!6" representation 2
8#56#$ 4

10#56#$ 2
8#70"$ 4

8#70"$ 2
10#70"$ Total

F1
p!g1

p 9 2 9 0 1 21

F1
n!g1

n 4 2 1 1 1 9

TABLE V. Relative strengths of N→N* transitions in neutrino scattering corresponding to %1/2
dominance.

SU!6" representation 2
8#56#$ 4

10#56#$ 2
8#70"$ 4

8#70"$ 2
10#70"$ Total

F1
'p!g1

'p 0 6 0 0 3 9

F1
'n!g1

'n 25 2 16 1 1 45
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transitions for helicity-1/2 dominanceN → N
∗

Fn

2 /F p

2
→ 3/7neutron to proton ratio

cf.  “helicity retention” model
Farrar, Jackson, Phys. Rev. Lett. 35 (1975) 1416

polarization asymmetries AN

1 → 1

cf.  pQCD “counting rules”

hard gluon exchange between quarks



Quark model

SU(6) may be      valid at x ~ 1/3 ≈

which combinations of resonances reproduce
behavior of structure functions at large x?
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"SU#6 $% , #8$

for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
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!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.
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A1
p 5/9 1 1 1 1 1
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n 0 2/5 1/3 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3
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!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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where the subscript 0 or 1 denotes the total spin of the two-
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from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal
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resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since
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a necessary condition for duality involves integrating over a
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ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
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and study their implications for x→1 in the sum. Then we
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or
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els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.
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hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2
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p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
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!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1
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In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and
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28 and
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410 representations of 56#, respectively, while
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tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
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In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-
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for neutrino scattering, which correspond to u!2d and &u
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.
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from Eq. #9$ by interchanging u↔d . In this limit, apart from
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pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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nuclear corrections in the deuteron at large x, however,

which is more sensitive to the high momentum components

of the deuteron wave function, the results beyond x!0.6 are
somewhat model dependent "22#, as indicated in Fig. 4. The
difference between the two sets of points is representative of

the theoretical uncertainty in the extraction. In particular, the

lower set of points corresponds to an analysis which ac-

counts for Fermi motion in the deuteron "28#, while the up-
per set of points includes Fermi motion and binding effects

"22# $see also Ref. "29#%. A fit to the weighted average of the
extrema of the two sets of data points, constrained to ap-

proach Rnp!6/19 as x→1, is indicated by the dashed curve

"a polynomial of degree two is used to fit the x dependence
of &s(x) in Eq. $10%#. The fit is clearly compatible with the
current data on Rnp, but could be further constrained by

more accurate data at large x. Several proposals for obtaining

the neutron to proton ratio at large x with reduced nuclear

uncertainties are discussed in Refs. "30,31#.
Using the mixing angle &s(x) fitted to R

np, the resulting

polarization asymmetries for the proton and neutron are

shown in Figs. 5 and 6, respectively, compared with a com-

pilation of large-x data from SLAC "32#, SMC "33#, and

HERMES "34#. The predicted x dependence of both A1
p and

A1
n in the S3/2 suppression scenario is relatively strong; the

SU$6% symmetric results which describe the data at x!1/3
rapidly give way to the broken SU$6% predictions as x→1.

Within the current experimental errors, the S3/2 suppression

model is consistent with the x dependence of both the Rnp

ratio and the polarization asymmetries.

Using the neutrino ratios R', A1
'p , and A1

'n , the indi-

vidual quark flavor and spin distribution ratios can be deter-

mined $or equivalently, extracted from the electromagnetic

ratios as discussed in the Appendix%. The unpolarized d/u
ratio in the S1/2 dominance scenario is shown in Fig. 7

$dashed%, and the spin-flavor ratios (u/u and (d/d are illus-
trated in Figs. 8 and 9, respectively.

C. Helicity 3Õ2 suppression

The above discussion has demonstrated how duality be-

tween the parton model and a sum over low-lying resonances

can arise on the basis of classifying transitions to excited

states according to the total spin of the quarks, with either

equal weighting of S1/2 and S3/2 components in the case of

SU$6% symmetry, or suppression of the latter at large x. Ac-
cording to duality, structure functions at large x are deter-

mined by the behavior of transition form factors at high Q2;
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In the other extreme limit as !s→"/2, the polarization asym-
metries approach !1, while Rnp→3/2. Neither of these sce-

narios are supported phenomenologically, as we shall discuss

below, and the physical region appears to correspond to 0

"!s"9"/32.
In analogy with Eqs. #10$–#12$, the ratio of the unpolar-

ized proton and neutron structure functions for neutrino scat-

tering is

R%#
1$7sin2!s
14!10sin2!s

, #14$

and the neutrino polarization asymmetries:

A1
%p#

1!5sin2!s
1$7sin2!s

, #15$

A1
%p#

7!8sin2!s
7!5sin2!s

. #16$

The dependence on the angle !s for the neutrino observables
is shown in Fig. 3 #dashed curves$. The trends of the ratios
are similar to those of the electromagnetic ratios in Fig. 2

#with the neutron and proton reversed$. Once again the

SU#6$ symmetric limit, Eq. #8$, is reproduced when !s
#"/4. The phenomenologically favored scenario in which
S3/2 contributions are suppressed in the limit x→1 gives rise

to

R%#
1

14
, A1

%p#1, A1
%n#1 &!s#0' . #17$

From the relations between the structure functions and par-

ton distributions in the Appendix one can verify that the

results for d/u extracted from Rnp are consistent with those

from R% &Eqs. #A5$ and #A12$', and those for (q/q extracted
from A1

N consistent with those from A1
%N &Eqs. #A6$–#A7$

and Eqs. #A13$–#A14$'.
The dependence of the structure function ratios in Eqs.

#10$–#12$ and Eqs. #14$–#16$ on one parameter !s means

that the SU#6$ breaking scenario with S3/2 suppression can be
tested by simultaneously fitting the n/p ratios and the polar-

ization asymmetries. In general, data on unpolarized struc-

ture functions are more abundant, especially at high x, than

on spin-dependent structure functions, so it is more practical

to fit the x dependence of !s(x) to the existing data on un-
polarized n/p ratios, which can then be used to predict the

polarization asymmetries.

Unfortunately, data on F1 neutrino structure functions at

x%0.4–0.5 are essentially nonexistent, and there have been
no experiments at all to measure spin-dependent structure

functions in neutrino scattering. The most precise data on the

electromagnetic neutron to proton ratio Rnp come from

SLAC experiments &20,21'. The absence of free neutron tar-
gets has meant that neutron structure information has had to

be inferred from inclusive deuteron and proton structure

functions. Because of uncertainties in the treatment of
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about the size of the nuclear EMC effects in the deuteron &22'.
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nuclear corrections in the deuteron at large x, however,

which is more sensitive to the high momentum components

of the deuteron wave function, the results beyond x!0.6 are
somewhat model dependent "22#, as indicated in Fig. 4. The
difference between the two sets of points is representative of

the theoretical uncertainty in the extraction. In particular, the

lower set of points corresponds to an analysis which ac-

counts for Fermi motion in the deuteron "28#, while the up-
per set of points includes Fermi motion and binding effects

"22# $see also Ref. "29#%. A fit to the weighted average of the
extrema of the two sets of data points, constrained to ap-

proach Rnp!6/19 as x→1, is indicated by the dashed curve

"a polynomial of degree two is used to fit the x dependence
of &s(x) in Eq. $10%#. The fit is clearly compatible with the
current data on Rnp, but could be further constrained by

more accurate data at large x. Several proposals for obtaining

the neutron to proton ratio at large x with reduced nuclear

uncertainties are discussed in Refs. "30,31#.
Using the mixing angle &s(x) fitted to R

np, the resulting

polarization asymmetries for the proton and neutron are

shown in Figs. 5 and 6, respectively, compared with a com-

pilation of large-x data from SLAC "32#, SMC "33#, and

HERMES "34#. The predicted x dependence of both A1
p and

A1
n in the S3/2 suppression scenario is relatively strong; the

SU$6% symmetric results which describe the data at x!1/3
rapidly give way to the broken SU$6% predictions as x→1.

Within the current experimental errors, the S3/2 suppression

model is consistent with the x dependence of both the Rnp

ratio and the polarization asymmetries.

Using the neutrino ratios R', A1
'p , and A1

'n , the indi-

vidual quark flavor and spin distribution ratios can be deter-

mined $or equivalently, extracted from the electromagnetic

ratios as discussed in the Appendix%. The unpolarized d/u
ratio in the S1/2 dominance scenario is shown in Fig. 7

$dashed%, and the spin-flavor ratios (u/u and (d/d are illus-
trated in Figs. 8 and 9, respectively.

C. Helicity 3Õ2 suppression

The above discussion has demonstrated how duality be-

tween the parton model and a sum over low-lying resonances

can arise on the basis of classifying transitions to excited

states according to the total spin of the quarks, with either

equal weighting of S1/2 and S3/2 components in the case of

SU$6% symmetry, or suppression of the latter at large x. Ac-
cording to duality, structure functions at large x are deter-

mined by the behavior of transition form factors at high Q2;
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Lalakulich,WM, Paschos (2005)

Phenomenological model
Construct structure function from phenomenological
N     N* transition form factors
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Resonance widths

II. RESONANCE PRODUCTION

In this article we discuss experiments in which the
reaction

!! ~k"p! ~p" ! "#! ~k0"!$$! ~p0" ! "#p#$ (2.1)

is studied. We adopt standard kinematics with the defini-
tions

q % k# k0; Q2 % #q2; W2 % p02

and compute the cross section d$
dQ2dW . The mass of the

resonance is not restricted to a specific value but allowed
to vary within an interval proportional to the width.
Consequently we let W vary and write the cross section
with formulas analogous to deep inelastic scattering. The
cross section is now written as

d$
d"dE0 %

G2

16#2 cos
2%C

E0

E
L"!W "! (2.2)

withmN the mass of the nucleon in the target, MR the mass
of the resonance and the leptonic tensor

L"! % Tr&&"!1# &5"k6 &!k6 0'
% 4!k"k0! $ k!k0" # g"!k ( k0 # i""!'(k'k0("

(2.3)

The hadronic tensor is defined as

W "! % 1

2mN

XhpjJ"!0"j!ih!jJ!!0"jpi)!W2 #M2
R"

% #W 1g"! $W 2

m2
N
p"p! # i""!$*p$q*

W 3

2m2
N

$W 4

m2
N
q"q! $W 5

m2
N
!p"q! $ q"p!"

$ i
W 6

m2
N
!p"q! # q"p!" (2.4)

where the sum implies a sum over the ! polarization states
and an averaging over the spins of the target. The integra-
tion over phase space of the !was carried out and gives the
one-dimentional )# function. Sometimes it is convenient
to use other variables for resonance production

d$
dQ2dW

% #W
mNEE0

d$
d"dE0 (2.5)

Since the ! resonance has an observable width, the )#
function should be replaced by its resonance representation

)!W2 #M2
R" %

MR#R
#

1

!W2 #M2
R"2 $M2

R#
2
R
: (2.6)

It is known that resonance production dominates neutrino
reactions in the few GeV energy region. The formalism we
present in this section is general and holds for various
resonances. Later on, when we relate the structure func-
tions to the form factors, we specialize to distinct final
states.

The hadronic matrix element differs from resonance to
resonance and contains vector and axial form factors. A
convenient parametrization for the !$$ resonance is the
following

h!$$jJ!jpi % !!!
3

p
$ *!p0"d*!u!p"

with d*! % g*!
"
CV3
mN

q6 $ CV4
m2
N
!p0 ( q" $ CV5

m2
N
!p ( q" $ CV6

#
&5 # q*

"
CV3
mN

&! $ CV4
m2
N
p0! $ CV5

m2
N
p!

#
&5

$ g*!
"
CA3
mN

q6 $ CA4
m2
N
!p0 ( q"

#
# q*

"
CA3
mN

&! $ CA4
m2
N
p0!

#
$ g*!CA5 $ q*q!

CA6
m2
N
: (2.7)

In the square of the matrix element also appears the
Rarita-Schwinger projection operator

j !ih !j % S$*

% &p6 0 $MR'
"
#g$* $ 1

3
&$&* $ 1

3MR

)!&$p0* # p0$&*" $ 2

3M2
R
p0$p0*

#
:

(2.8)

With these preliminaries the hadronic tensor takes the
form

W "! % 3

2

1

2mN
Tr&! $d""$S$*d*!!p6 $mN"')!W2 #M2

R"
(2.9)

with ! $d""$ % &0!d$""$&0 and then parametrized accord-
ing to (2.4). This way we define the relative normalization
between the structure functions and the form factors. The
factor 3 comes from the isospin coefficient for ! and the
1=2 from the averaging over the initial spins of the target.
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II. RESONANCE PRODUCTION

In this article we discuss experiments in which the
reaction

!! ~k"p! ~p" ! "#! ~k0"!$$! ~p0" ! "#p#$ (2.1)

is studied. We adopt standard kinematics with the defini-
tions

q % k# k0; Q2 % #q2; W2 % p02

and compute the cross section d$
dQ2dW . The mass of the

resonance is not restricted to a specific value but allowed
to vary within an interval proportional to the width.
Consequently we let W vary and write the cross section
with formulas analogous to deep inelastic scattering. The
cross section is now written as

d$
d"dE0 %

G2

16#2 cos
2%C

E0

E
L"!W "! (2.2)

withmN the mass of the nucleon in the target, MR the mass
of the resonance and the leptonic tensor

L"! % Tr&&"!1# &5"k6 &!k6 0'
% 4!k"k0! $ k!k0" # g"!k ( k0 # i""!'(k'k0("

(2.3)

The hadronic tensor is defined as

W "! % 1

2mN

XhpjJ"!0"j!ih!jJ!!0"jpi)!W2 #M2
R"

% #W 1g"! $W 2

m2
N
p"p! # i""!$*p$q*

W 3

2m2
N

$W 4

m2
N
q"q! $W 5

m2
N
!p"q! $ q"p!"

$ i
W 6

m2
N
!p"q! # q"p!" (2.4)

where the sum implies a sum over the ! polarization states
and an averaging over the spins of the target. The integra-
tion over phase space of the !was carried out and gives the
one-dimentional )# function. Sometimes it is convenient
to use other variables for resonance production

d$
dQ2dW

% #W
mNEE0

d$
d"dE0 (2.5)

Since the ! resonance has an observable width, the )#
function should be replaced by its resonance representation

)!W2 #M2
R" %

MR#R
#

1

!W2 #M2
R"2 $M2

R#
2
R
: (2.6)

It is known that resonance production dominates neutrino
reactions in the few GeV energy region. The formalism we
present in this section is general and holds for various
resonances. Later on, when we relate the structure func-
tions to the form factors, we specialize to distinct final
states.

The hadronic matrix element differs from resonance to
resonance and contains vector and axial form factors. A
convenient parametrization for the !$$ resonance is the
following

h!$$jJ!jpi % !!!
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p
$ *!p0"d*!u!p"
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"
CV3
mN

q6 $ CV4
m2
N
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m2
N
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&5 # q*

"
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mN
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N
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N
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#
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N
!p0 ( q"

#
# q*

"
CA3
mN

&! $ CA4
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N
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#
$ g*!CA5 $ q*q!

CA6
m2
N
: (2.7)

In the square of the matrix element also appears the
Rarita-Schwinger projection operator

j !ih !j % S$*

% &p6 0 $MR'
"
#g$* $ 1

3
&$&* $ 1

3MR

)!&$p0* # p0$&*" $ 2

3M2
R
p0$p0*

#
:

(2.8)

With these preliminaries the hadronic tensor takes the
form

W "! % 3

2

1

2mN
Tr&! $d""$S$*d*!!p6 $mN"')!W2 #M2

R"
(2.9)

with ! $d""$ % &0!d$""$&0 and then parametrized accord-
ing to (2.4). This way we define the relative normalization
between the structure functions and the form factors. The
factor 3 comes from the isospin coefficient for ! and the
1=2 from the averaging over the initial spins of the target.
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Neutrino structure functions
Neutrino form factors fitted to neutrino cross section data from 
BNL,  ANL,  BEBC,  FNAL  ...  more to come with MINER  νA

an additional decrease in the region of small Q2 where the
Pauli suppression is also significant, but the data are still
slightly lower than the theoretical curve.

In the ANL experiment the data are with large bins of Q2

and the maximum of d!=dQ2 is at a larger value of Q2.
The formalism described so far determines the cross sec-
tion including the absolute normalization. For MA !
1:05 GeV and the modified dipole in Eq. (2.12) we obtain
the curve in Fig. 2(a), which is above the data. The inte-
grated cross section in this case at high energies ap-
proaches 0:7 " 10#38cm2, which is consistent with the
experimental data. The discrepancy in Q2 # dependence
can not be resolved by the overall normalization of the
curve and requires a decrease of MA ! 0:84 GeV in order
to obtain the curve in Fig. 2(b). The two curves are without
(dotted) and with (solid curve) the muon mass. The inte-
grated cross section is also decreased approaching at high
energies a constant value of 0:55 " 10#38cm2, which is also
consistent with the data.

An earlier theoretical analysis [10] accounts for the
ANL data by using similar couplings and muon mass
effects. They include nuclear corrections by using deute-
rium wave functions and compare the differential cross
section to the ANL data. Another approach [19] describes
electron and neutrino scattering on various nuclei in terms
of a scaling law abstracted from data and the authors
present several distributions. A direct comparison with
our results is not available and perhaps difficult because
of the different methods.

Another way to reach an agreement with the data is to
replace the dependence (2.12) with a steeper dependence,
for example

CA
5 $Q2% ! CA

5 $0%
$1&Q2=M2

A%2
1

1& 2Q2=M2
A
;

with MA ! 1:05 GeV or
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FIG. 2. The cross section d!=dQ2, calculated for the ANL
neutrino energy distribution. The full lines are for m" !
0:105 GeV, the dashed lines are for the approximation m" ! 0.
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for the case m" ! 0:105 GeV, the dashed lines are for the
approximation m" ! 0.
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an additional decrease in the region of small Q2 where the
Pauli suppression is also significant, but the data are still
slightly lower than the theoretical curve.

In the ANL experiment the data are with large bins of Q2

and the maximum of d!=dQ2 is at a larger value of Q2.
The formalism described so far determines the cross sec-
tion including the absolute normalization. For MA !
1:05 GeV and the modified dipole in Eq. (2.12) we obtain
the curve in Fig. 2(a), which is above the data. The inte-
grated cross section in this case at high energies ap-
proaches 0:7 " 10#38cm2, which is consistent with the
experimental data. The discrepancy in Q2 # dependence
can not be resolved by the overall normalization of the
curve and requires a decrease of MA ! 0:84 GeV in order
to obtain the curve in Fig. 2(b). The two curves are without
(dotted) and with (solid curve) the muon mass. The inte-
grated cross section is also decreased approaching at high
energies a constant value of 0:55 " 10#38cm2, which is also
consistent with the data.

An earlier theoretical analysis [10] accounts for the
ANL data by using similar couplings and muon mass
effects. They include nuclear corrections by using deute-
rium wave functions and compare the differential cross
section to the ANL data. Another approach [19] describes
electron and neutrino scattering on various nuclei in terms
of a scaling law abstracted from data and the authors
present several distributions. A direct comparison with
our results is not available and perhaps difficult because
of the different methods.

Another way to reach an agreement with the data is to
replace the dependence (2.12) with a steeper dependence,
for example

CA
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of the flattening of the cross section at small Q2, as
expected.

We conclude, that different experiments, performed with
the help of bubble chambers in the 80’s, show at low Q2 a

slightly lower cross section than theoretically predicted.
The experiments described so far are not detailed enough
to allow separation of the form factors and a unique deter-
mination of their Q2 dependence.

Two new experiments K2K and MiniBooNE will be
delivering results. They are both at low neutrino energies
where the muon mass effects should be important. With the
neutrino spectra from [25,26] we predict the
Q2-distributions shown in Figs. 7 and 8, using the axial
form factor in Eq.(2.12). These experiments use medium or
heavy nuclei as targets and nuclear corrections must be
applied, which were left out in our curves (only Pauli
blocking is included).

IV. SPECIAL PROPERTIES

It is evident from our presentation that the cross section
in the ! resonance region has several important features
still to be investigated. One of them deals with the structure
of the form factors, especially the axial form factors. We
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of the flattening of the cross section at small Q2, as
expected.

We conclude, that different experiments, performed with
the help of bubble chambers in the 80’s, show at low Q2 a

slightly lower cross section than theoretically predicted.
The experiments described so far are not detailed enough
to allow separation of the form factors and a unique deter-
mination of their Q2 dependence.

Two new experiments K2K and MiniBooNE will be
delivering results. They are both at low neutrino energies
where the muon mass effects should be important. With the
neutrino spectra from [25,26] we predict the
Q2-distributions shown in Figs. 7 and 8, using the axial
form factor in Eq.(2.12). These experiments use medium or
heavy nuclei as targets and nuclear corrections must be
applied, which were left out in our curves (only Pauli
blocking is included).

IV. SPECIAL PROPERTIES

It is evident from our presentation that the cross section
in the ! resonance region has several important features
still to be investigated. One of them deals with the structure
of the form factors, especially the axial form factors. We

 2e-39

 4e-39

 6e-39

 8e-39

 0  0.5  1  1.5  2

d 
σ/

 d
Q

2 , c
m

2 /G
eV

2

Q2, GeV2

K2K experiment

W<1.4 GeV
W<1.6 GeV

FIG. 8. The cross section d!=dQ2, predicted for K2K experi-
ment, W < 1:4 (solid line) and W < 1:6 (dashed line).

 2e-39

 4e-39

 6e-39

 0  0.5  1  1.5  2

d 
σ/

 d
Q

2 , c
m

2 /G
eV

2

Q2, GeV2

MiniBooNE experiment

W<1.4 GeV
W<1.6 GeV

FIG. 7. The cross section d!=dQ2, predicted for MiniBOONe
experiment,W < 1:4 (solid line) and W < 1:6 (dashed line).

 2e-39

 4e-39

 6e-39

 8e-39

 1e-38

 0  0.5  1  1.5  2  2.5  3

d 
σ/

 d
Q

2 , c
m

2 /G
eV

2

Q2, GeV2

case(1)

case(2)

case(1)

case(2)

FNAL-15ft νp

FIG. 5. The cross section d!=dQ2, calculated for the FNAL
experiment for the behavior of the form factors in cases (1) and
(2).

 20

 40

 60

 80

 100

 120

 140

 0  0.5  1  1.5  2  2.5  3  3.5  4

d 
σ/

 d
Q

2 , e
ve

nt
s/

0.
1 

G
eV

Q2, GeV2

case(1)

case(2)

1.1<W<1.4 (GeV)

BEBC-86 νp

 2e-39

 4e-39

 6e-39

 8e-39

 1e-38

 0  0.5  1  1.5  2  2.5  3  3.5  4

d 
σ/

 d
Q

2 , c
m

2 /G
eV

2

Q2, GeV2

case(1)

case(2)

1.1<W<1.4 (GeV)

BEBC-90 νp
2

FIG. 6. The cross section d!=dQ2 in experiments BEBC-86
and BEBC-90 for the behavior of the form factors in cases (1)
and (2).

OLGA LALAKULICH AND EMMANUEL A. PASCHOS PHYSICAL REVIEW D 71, 074003 (2005)

074003-6

ANL

Lalakulich, Paschos,
Phys. Rev. D71 (2005) 074003



important for neutrino oscillation experiments

Neutrino structure functions
Neutrino form factors fitted to neutrino cross section data from 
BNL,  ANL,  BEBC,  FNAL  ...  more to come with MINER  νA

an additional decrease in the region of small Q2 where the
Pauli suppression is also significant, but the data are still
slightly lower than the theoretical curve.

In the ANL experiment the data are with large bins of Q2

and the maximum of d!=dQ2 is at a larger value of Q2.
The formalism described so far determines the cross sec-
tion including the absolute normalization. For MA !
1:05 GeV and the modified dipole in Eq. (2.12) we obtain
the curve in Fig. 2(a), which is above the data. The inte-
grated cross section in this case at high energies ap-
proaches 0:7 " 10#38cm2, which is consistent with the
experimental data. The discrepancy in Q2 # dependence
can not be resolved by the overall normalization of the
curve and requires a decrease of MA ! 0:84 GeV in order
to obtain the curve in Fig. 2(b). The two curves are without
(dotted) and with (solid curve) the muon mass. The inte-
grated cross section is also decreased approaching at high
energies a constant value of 0:55 " 10#38cm2, which is also
consistent with the data.

An earlier theoretical analysis [10] accounts for the
ANL data by using similar couplings and muon mass
effects. They include nuclear corrections by using deute-
rium wave functions and compare the differential cross
section to the ANL data. Another approach [19] describes
electron and neutrino scattering on various nuclei in terms
of a scaling law abstracted from data and the authors
present several distributions. A direct comparison with
our results is not available and perhaps difficult because
of the different methods.

Another way to reach an agreement with the data is to
replace the dependence (2.12) with a steeper dependence,
for example

CA
5 $Q2% ! CA

5 $0%
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;
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neutrino energy distribution. The full lines are for m" !
0:105 GeV, the dashed lines are for the approximation m" ! 0.
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FIG. 1. The cross section d!=dQ2, calculated for the BNL
neutrino energy spectrum and compared with the experiment for
the running width (2.13) (a) and (2.14) (b)1(b). The full lines are
for the case m" ! 0:105 GeV, the dashed lines are for the
approximation m" ! 0.
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an additional decrease in the region of small Q2 where the
Pauli suppression is also significant, but the data are still
slightly lower than the theoretical curve.

In the ANL experiment the data are with large bins of Q2

and the maximum of d!=dQ2 is at a larger value of Q2.
The formalism described so far determines the cross sec-
tion including the absolute normalization. For MA !
1:05 GeV and the modified dipole in Eq. (2.12) we obtain
the curve in Fig. 2(a), which is above the data. The inte-
grated cross section in this case at high energies ap-
proaches 0:7 " 10#38cm2, which is consistent with the
experimental data. The discrepancy in Q2 # dependence
can not be resolved by the overall normalization of the
curve and requires a decrease of MA ! 0:84 GeV in order
to obtain the curve in Fig. 2(b). The two curves are without
(dotted) and with (solid curve) the muon mass. The inte-
grated cross section is also decreased approaching at high
energies a constant value of 0:55 " 10#38cm2, which is also
consistent with the data.

An earlier theoretical analysis [10] accounts for the
ANL data by using similar couplings and muon mass
effects. They include nuclear corrections by using deute-
rium wave functions and compare the differential cross
section to the ANL data. Another approach [19] describes
electron and neutrino scattering on various nuclei in terms
of a scaling law abstracted from data and the authors
present several distributions. A direct comparison with
our results is not available and perhaps difficult because
of the different methods.

Another way to reach an agreement with the data is to
replace the dependence (2.12) with a steeper dependence,
for example

CA
5 $Q2% ! CA
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;
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of the flattening of the cross section at small Q2, as
expected.

We conclude, that different experiments, performed with
the help of bubble chambers in the 80’s, show at low Q2 a

slightly lower cross section than theoretically predicted.
The experiments described so far are not detailed enough
to allow separation of the form factors and a unique deter-
mination of their Q2 dependence.

Two new experiments K2K and MiniBooNE will be
delivering results. They are both at low neutrino energies
where the muon mass effects should be important. With the
neutrino spectra from [25,26] we predict the
Q2-distributions shown in Figs. 7 and 8, using the axial
form factor in Eq.(2.12). These experiments use medium or
heavy nuclei as targets and nuclear corrections must be
applied, which were left out in our curves (only Pauli
blocking is included).

IV. SPECIAL PROPERTIES

It is evident from our presentation that the cross section
in the ! resonance region has several important features
still to be investigated. One of them deals with the structure
of the form factors, especially the axial form factors. We
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of the flattening of the cross section at small Q2, as
expected.

We conclude, that different experiments, performed with
the help of bubble chambers in the 80’s, show at low Q2 a

slightly lower cross section than theoretically predicted.
The experiments described so far are not detailed enough
to allow separation of the form factors and a unique deter-
mination of their Q2 dependence.

Two new experiments K2K and MiniBooNE will be
delivering results. They are both at low neutrino energies
where the muon mass effects should be important. With the
neutrino spectra from [25,26] we predict the
Q2-distributions shown in Figs. 7 and 8, using the axial
form factor in Eq.(2.12). These experiments use medium or
heavy nuclei as targets and nuclear corrections must be
applied, which were left out in our curves (only Pauli
blocking is included).

IV. SPECIAL PROPERTIES

It is evident from our presentation that the cross section
in the ! resonance region has several important features
still to be investigated. One of them deals with the structure
of the form factors, especially the axial form factors. We
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Important to understand systematics of 
duality in     scattering cf.  e  scatteringν



• Remarkable confirmation of quark-hadron 
duality in structure functions                              
-    higher twists “small” down to low                      

• Quark models provide clues to origin of 
resonance cancellations      local duality                                                

• Practical applications                                                
-     broaden kinematic region for studying                     
-     (leading and higher twist) quark-gluon structure             
-     of nucleon                                               -              
-     understanding duality in     scattering important      
-     for interpretation of oscillation experiments

Summary

Q2(∼ 1 GeV2)

ν


